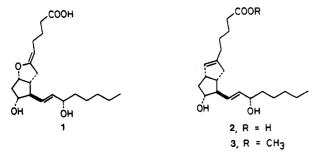
A Controlled Synthesis of Isocarbacyclin¹


Masaaki Suzuki, Hiroshi Koyano, and Ryoji Noyori*

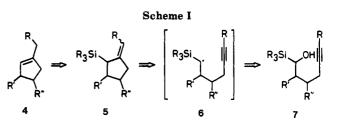
Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

Received July 10, 1987

An efficient synthesis of isocarbacyclin (2), one of the most potent and stable prostacyclin analogues, has been achieved. The 5,6-dehydro-PGE₂ derivative 8 is converted to the α -silvlated alcohol 12 via the four sequential reactions: (1) methylenation of the 9-keto group using a zinc-dibromomethane-titanium(IV) chloride mixed reagent, (2) stereoselective hydroboration by 9-borabicyclo[3.3.1]nonane and oxidative workup, (3) oxidation of the primary alcohol with pyridinium dichromate, (4) silylation of the aldehyde with the dilithium cyanobis(dimethylphenylsilyl)cuprate. The m-(trifluoromethyl)benzoate 13 undergoes photochemical radical cyclization in aqueous THF containing N-methylcarbazole and magnesium perchlorate to lead to the allylsilane 15. The same allylsilane is also accessible by reaction of the xanthate 14 with tributyltin hydride in the presence of di-tert-butyl peroxide. Deblocking of the 11- and 15-hydroxyls of 15, regiospecific protodesilylation of the allylsilane, and alkaline hydrolysis of the ester group complete the synthesis of 2. In a like manner, 24 is accessible from 18.

Prostacyclin (1) possesses remarkable antihypertensive and platelet aggregation-inhibiting properties,² but for being a clinically useful agent, it must overcome the sensitivity of the 2-alkylidenetetrahydrofuran structure to hydrolytic destruction.³ Isocarbacyclin (2),⁴ among the various carbocyclic analogues so far prepared,⁵ has deserved particular attention as a promising therapeutic agent for cardiovascular and circulatory diseases because of its potent physiological activities and satisfactory chemical stability. Efficient synthesis of 2 requires a

controlled construction of the bicyclo[3.3.0]octene framework. Our basic strategy for the regiodefined introduction of the double bond to the fused five-membered ring is outlined in Scheme I. The 5-exo-dig addition of α -silylated radical 6 into the internal acetylenic bond,⁶ followed by protodesilylation of the allylsilane 5^7 is expected to allow


(1) Prostaglandin Synthesis. 14. Part 13: Tanaka, T.; Hazato, A.; Bannai, K.; Okamura, N.; Sugiura, S.; Manabe, K.; Toru, T.; Kurozumi, S.; Suzuki, M.; Kawagishi, T.; Noyori, R. *Tetrahedron* 1987, 43, 813.

 (2) Vane, J. R. Angew. Chem., Int. Ed. Engl. 1983, 22, 741.
 (3) (a) Chiang, Y.; Kresge, A. J.; Cho, M. J. J. Chem. Soc., Chem. Commun. 1979, 129.
 (b) Chiang, Y.; Cho, M. J.; Euser, B. A.; Kresge, A. J. J. Am. Chem. Soc. 1986, 108, 4192. (c) Honn, K. V.; Cicone, B.; Škoff, A. Science (Washington, D.C.) 1981, 212, 1270.

(4) Shibasaki, M.; Torisawa, Y.; Ikegami, S. Tetrahedron Lett. 1983, 24, 3493.

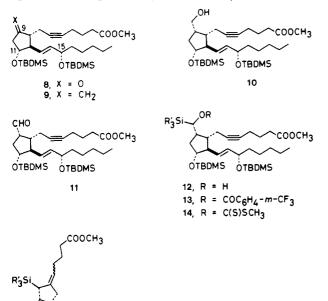
(5) (a) Bartmann, W.; Beck, G. Angew. Chem., Int. Ed. Engl. 1982, 21,
(5) (a) Bartmann, W.; Beck, G. Angew. Chem., Int. Ed. Engl. 1982, 21,
(b) Aristoff, P. A. Advances in Prostaglandin, Thromboxane, and Leukotriene Research; Pike, J. E., Morton, D. R., Jr., Eds.; Raven: New York, 1985; Vol. 14, pp 309-392. (c) Shibasaki, M.; Sodeoka, M.; Ogawa, Y. J. Org. Chem. 1984, 49, 4096.

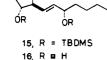
 (6) Radical addition to acetylenes for synthesis of carbocycles: (a) Stork, G.; Malhotra, S.; Thompson, H.; Uchibayashi, M. J. Am. Chem. Soc. 1965, 87, 1148. (b) Beckwith, A. L. J.; Meijs, G. F. J. Chem. Soc., Chem. Commun. 1981, 595. (c) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1982, 23, 2505. (d) Corey, E. J.; Pyne, S. G. Ibid. 1983, 24, 2821. (e) Clive, D. L. J.; Beaulieu, P. L.; Set, L. J. Org. Chem. 1984, 49, 1314. (f) Curran, D. P.; Chen, M. Tetrahedron Lett. 1985, 26, 4991. (g) Pattenden, G.; Robertson, G. M. Ibid. 1986, 27, 399. (h) Curran, D. P.; Chen, M.; Kim, D. J. Am. Chem. Soc. 1986, 108, 2489. For 5-exo-trig addition of α-silylated radical to the double bond, see: (i) Magnol, E.; Malacria, M. Tetrahedron Lett. 1986, 27, 2255. (j) Wilt, J. W. Tetrahedron 1985, 41, 3979. Excellent review: Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: New York, 1986.

the selective formation of the desired cyclopentene skeleton 4. Here the well-known Barton deoxygenation of alcohols⁸ or the new Matsuura photochemical procedure⁹ would provide a powerful tool for the generation of free radicals from 7. These strategies and methodologies coupled with the recently developed three-component coupling prostaglandin (PG) synthesis^{10,11} have opened a new, efficient way to $2.^{12}$

The starting optically pure 5,6-dehydro-PGE₂ derivative 8 was obtained by the convergent one-pot linking of the appropriate cyclopentenone and the two side-chain units.¹⁰ The 9-keto group (PG numbering) was methylenated by a zinc-dibromomethane-titanium(IV) mixed reagent¹³ in dichloromethane to give 9 in 97% yield. Stereoselective hydroboration of 9 with 5 equiv of 9-borabicyclo[3.3.1]nonane in THF containing 1 equiv of methyl acetate followed by workup with alkaline hydrogen peroxide gave the hydroxymethyl derivative 10 in 84% yield. Oxidation of the primary alcohol with 2.5 equiv of pyridinium dichromate in dichloromethane giving the labile aldehyde 11 (85%) was followed by immediate silvlation with a

(8) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574. See also a review: Hartwig, W. Tetrahedron 1983, 39, 2609. (9) Saito, I.; Ikehira, H.; Kasatani, R.; Watanabe, M.; Matsuura, T. J. Am. Chem. Soc. 1986, 108, 3115.

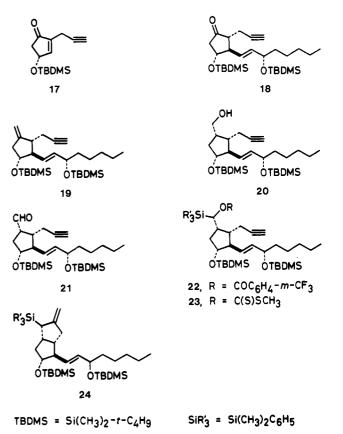

(10) Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. 1985, 107. 3348.


(11) Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 847. (12) Previous syntheses of 2: (a) Shibasaki, M.; Fukasawa, H.; Ikegami, S. Tetrahedron Lett. 1983, 24, 3497. (b) Sodeoka, M.; Shibasaki, M. Chem. Lett. 1984, 579. (c) Torisawa, Y.; Okabe, H.; Shibasaki, M.; Ikegami, S. Ibid. 1984, 1069. (d) Torisawa, Y.; Okabe, H.; Ikegami, S. J. Chem. Soc., Chem. Commun. 1984, 1602. (e) Ogawa, Y.; Shibasaki, M. Tetrahedron Lett. 1984, 25, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 25, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 1069. (h) Kunne, K.; Kuima K. (h) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M. Itahadron Lett. 1984, 26, 1067. (f) Mase, T.; Sodeoka, M.; Shibasaki, M.; Shibasaki, M.; Jakada, Jakada M. Ibid. 1984, 25, 5087. (g) Koyama, K.; Kojima, K. Chem. Pharm. Bull. 1984, 32, 2866. (h) Bannai, K.; Tanaka, T.; Okamura, N.; Hazato, A.; Sugiura, S.; Manabe, K.; Tomimori, K.; Kurozumi, S. Tetrahedron Lett. Sugina, S., Hanabe, K., Folininoti, K., Rufozini, S. *Tetrateoton Letton* 1986, 27, 6353. (i) Hashimoto, S.; Shinoda, T.; Shimada, Y.; Honda, T.;
 Ikegami, S. *Ibid*. 1987, 28, 637. (i) Nagao, Y.; Nakamura, T.; Kume, M.;
 Ochiai, M.; Fuji, K.; Fujita, E. J. Chem. Soc., Chem. Commun. 1987, 269. (13) (a) Lombardo, L. Org. Synth. 1987, 65, 81; (b) Tetrahedron Lett.
 1982, 23, 4293. See also: Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H.

Ibid. 1978, 27, 2417.

^{(7) (}a) Chan, T. H.; Fleming, I. Synthesis 1979, 761. (b) Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99. (c) Hosomi, A.; Sakurai, H. J. Synth. Org. Chem. Jpn. 1985, 43, 406.

dilithium cyanobis(dimethylphenylsilyl)cuprate^{7b,14} to afford the requisite α -silylated alcohol 12 in 85% yield as a 1:1 mixture of diastereomers. The key cyclization to the bicyclo[3.3.0]octane framework was cleanly effected by a photosensitized procedure.⁹ Thus condensation of 12 and m-(trifluoromethyl)benzoyl chloride with added 4-(dimethylamino)pyridine in acetonitrile gave the benzoate 13 (90%), which in turn was exposed to a 500-W mercury lamp at room temperature in a 10:1 THF-water mixture containing N-methylcarbazole and magnesium perchlorate to produce the expected allylsilane 15 (5Z/5E = 1:1, 75%).



TBDMS = SI(CH₃)₂-t-C₄H₉

 $SiR_3 = Si(CH_3)_2C_6H_5$

Alternatively, the acetylenic alcohol 12 could also be converted to 15 by organotin chemistry.⁸ Sequential treatment of 12 with (1) 1 equiv of lithium diisopropylamide in THF, (2) excess carbon disulfide and HMPA, and (3) methyl iodide formed the xanthate 14 in 68% yield. Subsequent reaction of 14 with a large excess of tributyltin hydride in the presence of di-tert-butyl peroxide in refluxing benzene led to the allylsilane 15 (5Z/5E = 1:1,86%). Deblocking of the 11- and 15-hydroxyls of 15 with 1 N perchloric acid in a 50:1 methanol-ether mixture and subsequent protodesilylation^{7,12a} of 16 with trifluoroacetic acid at -78 to -20 °C completed the synthesis of 3 in 94% yield. The methylenecyclopentane-cyclopentene transformation proceeded in a regiospecific manner, and no double bond isomers of 3 were detected by the 500-MHz ¹H NMR and HPLC assay. Alkaline hydrolysis of 3 gave 2.4

This synthetic sequence finds a wide flexibility. The acetylenic compound 18 was obtainable by the organocopper conjugate addition of the ω side-chain unit^{10,15} to the commercially available optically active enone 17. This compound was converted in a like manner via 19–23 to the bicyclic allylsilane 24, a useful intermediate for the modification of the α side chain of 2. Suzuki et al.

Experimental Section

General Remarks. (a) Analyses. IR spectra were recorded on a JASCO IRA-1 spectrometer. Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR) spectra were determined on a JEOL FX-90Q (90 MHz), GX-270 (270 MHz), or GX-500 (500 MHz) spectrometer. Chemical shifts of ¹H NMR are expressed in parts per million relative to internal tetramethylsilane $(\delta = 0)$ or chloroform ($\delta = 7.26$) and of ¹³C NMR relative to internal tetramethylsilane ($\delta = 0$) or chloroform-d ($\delta = 77.1$). Mass spectra (MS) and high-resolution mass spectra (HRMS) were recorded with a JEOL TMS-DX 300 spectrometer. Optical rotations were recorded on a JASCO DIP-181 digital polarimeter. The highperformance liquid chromatography (HPLC) analyses were carried out on a Waters 6000A apparatus with a Waters differential refractometer R401 RI detector using Zorbax Sil column (4.6 mm \times 25 cm): solvent, 1:40 ethanol/hexane; flow rate, 1.4 mL/min; pressure, 140 kg/cm².

(b) Chromatography. R_f values on TLC were recorded on E. Merck precoated (0.25 mm) silica gel 60 F_{254} plates. The plates were sprayed with a solution of 2% *p*-anisaldehyde in 5% ethanolic sulfuric acid and then heated until the spots became clearly visible. Column chromatography was conducted by using silica gel (E. Merck, 7734, 70–230 mesh; Fuji Devison, BW-80, 80–200 mesh; or Katayama K230, 230–400 mesh).

(c) Solvents. Ether, THF, and benzene were distilled over sodium-benzophenone ketyl under argon atmosphere. CH_2Cl_2 was distilled over P_2O_5 . CH_3CN and hexamethylphosphoric triamide (HMPA) were distilled over CaH_2 .

(d) Substrates and Reagents. 5,6-Dehydro-PGE₂ derivative 8, $[\alpha]^{17}_D$ -8.9° (c 1.01, CH₃OH), was synthesized by our standard procedure.¹⁰ The optically active enone 17, $[\alpha]^{22}_D$ + 18.4° (c 1.23, CH₃OH), and (*S,E*)-3-(*tert*-butyldimethylsiloxy)-1-iodo-1-octene, $[\alpha]^{23}_D$ -37.5° (c 0.97, CH₃OH), were supplied from Teijin Co. The Zn-CH₂Br₂-TiCl₄ mixed methylenation reagent was prepared according to the procedure by Lombardo.^{13a} The THF solution of C₆H₅(CH₃)₂SiLi and [C₆H₅(CH₃)₂Si]₂Cu(CN)Li₂ were prepared by the method of Fleming.^{7b,14} Copper(I) iodide (Nakarai) was continuously extracted with THF using a Soxhlet extractor and then dried in vacuo. Commercial hexane solution of *n*-C₄H₉Li (Aldrich) were stored at 4 °C and used directly from the bottles. Molarity

⁽¹⁴⁾ Lipshutz, B. H. Synthesis 1987, 325.

⁽¹⁵⁾ Suzuki, M.; Suzuki, T.; Kawagishi, T.; Morita, Y.; Noyori, R. Isr. J. Chem. 1984, 24, 118.

of these alkyllithiums were determined by titration.¹⁶ Tributylphosphine (Nakarai) was distilled before use. Carbon disulfide, methyl iodide, methyl acetate, and trifluoroacetic acid were used after distillation over P_2O_5 . Dimethyl sulfoxide (DMSO) was dried over molecular sieves (4A). N-methylcarbazole was synthesized by the addition of methyl iodide (1.2 equiv) to the lithiated carbazole generated by mixing carbazole and n-C₄H₀Li (1.2 equiv) in ether at 0 °C in the presence of HMPA (1.0 equiv) followed by the stirring at 20 °C for 3 h. A solution of diisopropylamide (LDA) in THF was prepared by mixing equimolar amounts of diisopropylamine and n-C₄H₉Li in THF at 0 °C for 2 h, yielding a solution of LDA in THF. Reactions with organometallic reagents were conducted under argon atmosphere. The apparatus (ampule, test tube, and flask) for such reactions was evacuated by heating with a heat gun under high vaccum and then filled with argon.

 $(11\alpha, 13E, 15S)$ -Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-methyleneprost-13-en-5-yn-1-oate (9). In a 200-mL round-bottomed flask were placed a solution of the ketone 8 (961.8 mg, 1.62 mmol) in CH₂Cl₂ (60 mL) and the Zn-CH₂Br₂-TiCl₄ mixed methylenation reagent (slurry, 20 mL) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was diluted with hexane (50 mL) and then poured into the cold saturated NaHCO₃ aqueous solution (100 mL). The mixture was extracted with ether (25 mL \times 3). The combined extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (50 g) using a 20:1 mixture of hexane/ethyl acetate as eluant to give 9 (920.1 mg, 97%) as °_D −7.1° a colorless oil: TLC $R_f 0.55$ (5:1 hexane/ethyl acetate); $[\alpha]^{2i}$ (c 1.89, CH₃OH); IR (CHCl₃) 1740, 1660, 1250 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.02, 0.04 (s each, 12, 4 OSiCH₃), 0.87, 0.88, 0.89 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1-1.6 (m, 8, 4 CH₂), 1.79 (tt, 2, J = 7.2, 7.2 Hz, $CH_2CH_2C(O)$), 2.1–2.4 (m, 7, 3 CH_2 and CH), 2.43 (t, 2, J = 7.2 Hz, $CH_2C(O)$), 2.65 (dd, 1, J = 6.9, 16.2 Hz, allylic CH), 3.67 (s, 3, OCH₃), 3.87 (dd, \pm , J = 8.1, 15.0 Hz, CHO), 4.06 (dt, 1, J = 5.7, 5.7 Hz, allylic CHO), 4.95, 5.00 (br s each, 2, methylene), 5.41 (dd, 2, J = 7.6, 16.2 Hz, vinyl), 5.54 (dd, 2, J = 5.3, 15.2 Hz, vinyl); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.5, -4.4, -4.1, 13.9, 18.1, 18.3, 18.5, 22.3, 22.7, 24.6, 25.1, 26.0, 32.0, 33.0, 38.8, 42.6, 46.9, 51.2, 55.5, 73.3, 77.0, 79.6, 79.9, 107.1, 130.4, 135.6, 150.5, 173.4; MS, m/z 590 (M⁺); HRMS, m/z calcd for C₃₄H₆₂O₄Si₂ 590.4186, found 590.4202.

 $(9\alpha, 11\alpha, 13E, 15S)$ -Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-(hydroxymethyl)prost-13-en-5-yn-1-oate (10). In a 30-mL round-bottomed flask was placed a solution of 9 (97.6 mg, 0.165 mmol) and methyl acetate (0.02 mL, 0.252 mmol) in THF (6 mL). To this was added a solution of 9-borabicyclo-[3.3.1]nonane (0.5 M, 1.65 mL, 0.825 mmol) in THF at 0 °C, and the mixture was stirred for 2.5 h at 0 °C. To this were successively added 3 N NaOH aqueous solution (0.50 mL) and 30% H₂O₂ aqueous solution (0.50 mL) at 0 °C. After being stirred for 30 min at 0 °C, the mixture was poured into water (10 mL) and extracted with ether (5 mL \times 3). The combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (6 g) using a 10:1 mixture of hexane/ethyl acetate as eluant to give 10 (84.7 mg, 84%) as a colorless oil: TLC R_f 0.46 (2:1 hexane/ethyl acetate); $[\alpha]^{26}_{\rm D}$ +2.6° (c 1.50, CH₃OH); IR (CHCl₃) 3400, 1740, 1250 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.02, 0.03, 0.04 (s each, 12, 4 OSiCH₃), 0.87, 0.88, 0.89 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1–1.6 (m, 10, 5 CH₂), 1.79 (tt, 2, J = 7.1, 7.1 Hz, $CH_2CH_2C(O)$), 2.0-2.3 (m, 7, 2 CH₂ and 3 CH), 2.42 (t, 2, J = 7.4 Hz, CH₂C(O)). 3.0-3.1 (m, 1, OH), 3.67 (s, 3, OCH₃), 3.7-3.9 (m, 2, CH₂OH), 3.97 (dd, 1, J = 3.6, 7.6 Hz, CHO), 4.04 (dt, 1, J = 6.1, 6.1 Hz, allylic CHO), 5.35 (dd, 2, J = 7.9, 15.5 Hz, vinyl), 5.45 (dd, 2, J = 5.3, 15.5 Hz, vinyl); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.7, -4.6, -4.3, 13.9, 17.8, 18.2, 18.4, 22.5, 24.3, 24.9, 25.8, 31.5, 31.8, 32.8, 38.6, 39.1, 41.7, 46.2, 51.2, 56.9, 63.4, 73.0, 78.8, 79.4, 80.5, 130.8, 135.1, 173.3; MS, m/z 608 (M⁺); HRMS, m/z calcd for C₃₀H₅₅O₅Si₂ (M⁺ C₄H₉) 551.3588, found 551.3605.

 $(9\alpha,11\alpha,13E,15S)$ -Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-formylprost-13-en-5-yn-1-oate (11). To a solution of 10 (46.0 mg, 7.6 × 10⁻² mmol) in CH₂Cl₂ (10 mL) was added pyridinium dichromate (70.0 mg, 0.19 mmol) at 20 °C. The mixture was stirred for 11 h at 20 °C. The insoluble material was removed by filtration, and the filtrate was evaporated. The residual material was subjected to column chromatography on silica gel (5 g) using a 10:1 mixture of hexane/ethyl acetae as eluant to give 11 (39.0 mg, 85%) as a colorless oil; TLC R_f 0.59 (2:1 hexane/ethyl acetate); IR (CHCl₃) 1740, 1250 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.01, 0.02, 0.03, 0.04 (s each, 12, 4 OSiCH₃), 0.86, 0.89 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1–1.7 (m, 8, 4 CH₂), 1.79 (tt, 2, J = 7.3, 7.3 Hz, CH₂CH₂C(O)), 1.9–2.3 (m, 8, 3 CH₂ and 2 CH), 2.41 (t, 2, J = 7.5 Hz, CH₂C(O)), 2.89 (dd, 1, J = 3.8, 8.4, 17.3 Hz, CHC(O)H), 3.67 (s, 3, OCH₃), 3.92 (dd, 1, J = 7.1, 14.1 Hz, CHO), 4.06 (dt, 1, J = 5.5, 5.5 Hz, allylic CHO), 5.36 (dd, 1, J = 7.9, 15.9 Hz, vinyl), 5.53 (dd, 1, J = 5.1, 15.4 Hz, vinyl), 9.95 (d, 1, J = 2.9 Hz, C(O)H); MS, m/z 606 (M⁺); HRMS, m/z calcd for C₃₄H₆₂O₅Si₂ 606.4136, found 606.4128.

(9α,11α,13E,15S)-Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-[(dimethylphenylsilyl)hydroxymethyl]prost-13-en-5-yn-1-oate (12). To a solution of the aldehyde 11 (159.0 mg, 0.262 mmol) in THF (15.0 mL) was added a solution of $[C_6H_5(CH_3)_2Si]_2Cu(CN)Li_2$ (0.27 M, 1.20 mL, 0.314 mmol) in THF at -78 °C. The mixture was stirred at -78 °C for 30 min and then quenched with saturated NH_4Cl aqueous solution (10 mL) at the same temperature with vigorous shaking. The mixture was extracted with ether (10 mL \times 3). The combined ethereal extracts were washed with saturated NaCl aqueous solution (25 mL), dried over Na_2SO_4 , and evaporated. The residual material was subjected to column chromatography on silica gel (6 g) using a 15:1 mixture of hexane/ethyl acetate as eluant to give 12 (165.0 mg, 85%) as a colorless oil: TLC R_f 0.31 (5:1 hexane/ethyl acetate); IR (CHCl₃) 3400, 1740, 1250 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.02, 0.01, 0.03 (s each, 12, 4 OSiCH₃), 0.36, 0.37 (s each, 6, 2 SiCH₃), 0.85, 0.87 (s each, 21, 2 OSiC(CH₃)₃ and CH_3), 1.1-1.7 (m, 10, 5 CH_2), 1.73 (tt, 2, J = 7.3, 7.3 Hz, $CH_2CH_2C(O)$), 1.93 (dt, 1, J = 7.1, 7.3 Hz, CH), 2.0–2.3 (m, 6, 2 CH_2 and 2 CH), 2.38 (t, 2, J = 7.4 Hz, $CH_2C(O)$), 3.09 (d, 1, J= 9.2 Hz, OH), 3.66 (s, 3, OCH₃), 3.9-4.1 (m, 3, 3 CHO), 5.29 (dd, 1, J = 8.4, 15.7 Hz, vinyl), 5.40 (dd, 1, J = 5.4, 15.3 Hz, vinyl), 7.3-7.6 (m, 5, aromatic); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.6, -4.5, -4.1, -4.0, 13.9, 18.1, 18.3, 18.4, 22.6, 24.5, 25.0, 26.0, 32.0, 33.1, 37.5, 38.8, 42.0, 48.7, 51.2, 57.4, 64.6, 73.2, 79.4, 79.5, 80.7, 127.9, 129.1, 131.2, 134.1, 135.2, 138.1, 173.4; MS, m/z 685 (M⁺ – C₄H₉); HRMS, m/z calcd for $C_{38}H_{65}O_5Si_3$ (M⁺ – C_4H_9) 685.4140, found 685.4125.

 $(9\alpha, 11\alpha, 13E, 15S)$ -Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-[(dimethylphenylsilyl)((m-(trifluoromethyl)benzoyl)oxy)methyl]prost-13-en-5-yn-1-oate (13). To a solution of 12 (62.3 mg, 8.40×10^{-2} mmol) in CH₃CN (3.0 mL) were successively added 4-(dimethylamino)pyridine (25.0 mg, 0.21 mmol) and m-(trifluoromethyl)benzoyl chloride (0.03 mL, 0.18 mmol) at 18 °C. The mixture was stirred for 15 h at the same temperature and then poured into saturated NH₄Cl aqueous solution (3 mL). The resulting mixture was extracted with ether $(3 \text{ mL} \times 3)$. The combined organic extracts were dried over Na_2SO_4 and evaporated. The residual material was subjected to column chromatography on silica gel (5 g) using a 20:1 mixture of hexane/ethyl acetate as eluant to give 13 (69.3 mg, 90%) as a colorless solid: TLC R_f 0.33 (5:1 hexane/ethyl acetate); IR (CHCl₃) 1710, 1610, 1320, 1250, 1150 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.04, -0.03, 0.00, (s each, 12, 4 OSiCH₃), 0.40, 0.41 (s each, 6, 2 SiCH₃), 0.85, 0.86 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1–1.6 (m, 10, 5 CH₂), 1.74 (tt, 2, J = 7.3, 7.3 Hz, $CH_2CHC(O)$), 1.8–2.3 (m, 7, 2 CH₂ and 3 CH), 2.40 (t, 2, J = 7.6 Hz, CH₂C(O)), 2.4–2.5 (m, 1, allylic CH), 3.69 (s, 3, OCH₃), 3.76 (dd, 1, J = 7.3, 15.5 Hz, CHO), 3.9-4.0 (m, 1, allylic CHO), 5.20 (s, 1, vinyl), 5.22 (d, 1, J = 2.0 Hz, vinyl), 5.65 (d, 1, J = 2.3 Hz, CH(Si)O), 7.3-8.4 (m, 9, aromatic); ¹³Č NMR (CDCl₃, 22.5 MHz) δ –4.6, –4.4, –4.1, –3.9, -3.7, 13.9, 18.1, 18.3, 18.5, 18.6, 22.6, 24.5, 25.0, 26.0, 32.0, 33.1,36.9, 38.7, 39.5, 46.2, 51.2, 55.7, 70.7, 73.1, 78.2, 79.8, 80.0, 126.6 $(q, J_{C-F} = 4.1 \text{ Hz}, CF_3), 127.9, 128.3, 129.0, 129.5, 129.9, 130.6,$ 132.0, 132.8, 134.2, 135.8, 136.2, 164.9, 173.5; MS, m/z 857 (M⁺ C_4H_9 ; HRMS, m/z calcd for $C_{46}H_{68}O_6Si_3F_3$ (M⁺ - C_4H_9) 857.4276, found 857.4293.

(9α,11α,13E,15S)-Methyl 11,15-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-9-[(dimethylphenylsilyl)(((methylthio)(thiocarbonyl))oxy)methyl]prost-13-en-5-yn-1-oate (14).

⁽¹⁶⁾ Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879.

To a solution of 12 (40.5 mg, 5.45 x 10^{-2} mmol) in THF (8.0 mL) was added a solution of LDA (0.4 M, 0.14 mL, 5.6×10^{-2} mmol) in THF at -78 °C, and the mixture was stirred for 3 h. To this were successively added HMPA (0.24 mL, 1.32 mmol) and CS₂ (0.05 mL, 0.83 mmol), and the mixture was stirred for 1 h at 0 $\,$ °C. To this was added CH₃I (0.06 mL, 0.96 mmol) at the same temperature. After 30 min, this mixture was poured into saturated NH₄Cl aqueous solution (10 mL). The mixture was extracted with ether (5 mL \times 3). The combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (3 g) using a 20:1 mixture of hexane/ethyl acetate as eluant to give 14 (31.0 mg, 68%) as a yellow oil: TLC R_f 0.43 (5:1 hexane/ethyl acetate); IR (CHCl₃) 1740, 970 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.08, -0.06, -0.01, 0.02 (s each, 12, 4 OSiCH₃), 0.40, 0.43 (s each, 6, 2 SiCH₃), 0.80, 0.87 (s each, 21, 2 $OSiC(CH_3)_3$ and CH_3), 1.1–1.7 (m, 10, 5 CH_2), 1.73 (tt, 2, J = 7.3, 7.3 Hz, $CH_2CHC(O)$), 1.8–2.6 (m, 7, 2 CH_2 and 3 CH), 2.40 (t, 2, J = 7.4 Hz, CH₂C(O)), 2.50 (s, 3, SCH₃), 3.68 (s, 3, OCH₃), 3.72 (dd, 1, J = 7.9, 15.0 Hz, CHO), 4.00 (dt, 1, J= 5.3, 5.3 Hz, allylic CHO), 5.20 (dd, 1, J = 15.5, 7.7 Hz, vinyl), 5.37 (dd, 1, J = 5.6, 15.5 Hz, vinyl), 6.38 (d, 1, J = 2.3 Hz, CH-(Si)O), 7.3-7.6 (m, 5, aromatic); ¹³C NMR (CDCl₃, 67.5 MHz) δ -4.7, -4.6, -4.4, -4.2, -3.6, -3.4, 14.0, 17.9, 18.2, 18.4, 18.8, 22.6,24.3, 25.0, 25.9, 31.8, 32.9, 36.7, 38.6, 39.9, 45.6, 51.4, 55.4, 73.0, 77.9, 79.5, 79.9, 80.6, 127.9, 129.6, 130.3, 134.1, 134.4, 135.9, 173.6, 213.4; MS, m/z 775 (M⁺ – C₄H₉); HRMS, m/z calcd for C₄₀- $H_{67}O_5Si_3S_2$ (M⁺ – C₄H₉) 775.3738, found 775.3743.

 $[3aS-[2E,3a\alpha,4\alpha(1E,3R^*),5\beta,6a\alpha]]$ -Methyl 5-[Hexahydro-5-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-4-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-1-(dimethylphenylsilyl)-2(1H)-pentalenylidene]pentanoate and Its 2ZIsomer (15). In a 10-mL test tube was placed a solution of 13 $(14.0 \text{ mg}, 1.53 \times 10^{-2} \text{ mmol}), \text{Mg}(\text{ClO}_4)_2 (3.4 \text{ mg}, 1.53 \times 10^{-2} \text{ mmol}),$ and N-methylcarbazole (3.0 mg, 1.66×10^{-2} mmol) in a 10:1 mixture of THF and water (8.0 mL). This solution was irradiated by using a 500-W high-pressure mercury lamp at 18 °C for 16 h. The solution was poured into saturated NaHCO₃ aqueous solution (5 mL), and the mixture was extracted with ether (3 mL \times 3). After evaporation of the solvent, the residual material was subjected to column chromatography on silica gel (1.5 g) using a 100:1 mixture of hexane/ethyl acetate as eluant to give 15 (8.3 mg, 75%) as a colorless oil: TLC R_f 0.46 (5:1 hexane/ethyl acetate); IR (CHCl₃) 1740, 1360, 1250, 1100 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.00, 0.02, 0.03 (s each, 12, 4 OSiCH₃), 0.24, 0.25, 0.26, 0.28 (s each, 6, 2 SiCH₃), 0.7-1.0 (m, 21, 2 OSiC(CH₃)₃ and CH₃), 1.0-1.7 (m, 12, 6 CH₂), 1.7-2.0 (m, 5, 3 CH and CH₂), 2.0-2.3 (m, 5, allylic 2 CH₂ and allylic CH), 3.5-3.7 (m, 1, CHO), 3.66, 3.67 (s each, 3, OCH₃), 4.02 (br, 1, CHO), 4.92, 5.09 (br each, 1, vinyl) 5.3-5.5 (m, 2, vinyl), 7.3-7.5 (m, 5, aromatic); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.6, -4.5, -4.4, -4.1, -3.9, -3.4, 14.1, 18.1, 18.3, 22.6, 25.1, 25.4, 26.0, 29.2, 31.8, 33.6, 33.9, 38.7, 39.4, 39.7, 43.5, 43.7, 44.5, 45.0, 46.0, 51.4, 56.1, 73.3, 78.2, 119.2, 119.7, 127.7, 128.9, 129.0, 130.9, 133.8, 134.0, 134.3, 134.4, 138.3, 138.4, 143.1, 144.3, 174.1; MS, m/z 726 (M⁺); HRMS, m/z calcd for C₄₂H₇₄O₄Si₃ 726.4895, found 726.4906.

[3aS-[2E,3a α ,4 α (1E,3R*),5 β ,6a α]]-Methyl 5-[Hexahydro-5-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-4-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-1-(dimethylphenylsilyl)-2(1H)-pentalenylidene]pentanoate and Its 2Z Isomer (15). In a 20-mL test tube was placed a solution of the xanthate 14 (1.3 mg, 1.6 × 10⁻³ mmol) and tributyltin hydride (0.05 mL, 0.19 mmol) in benzene (1.0 mL). To this was added di-*tert*-butyl peroxide (2.5 mg, 1.71 × 10⁻² mmol), and the mixture was stirred for 4 h at 65 °C. The reaction mixture was evaporated, and the residual material was subjected to column chromatography on silica gel (0.5 g) using a 200:1 mixture of hexane/ethyl acetate as eluant to give 15 (1.0 mg, 86%) as a colorless oil. TLC R_f value and spectral data of this compound were identical with those of the product derived from the *m*-(trifluoromethyl)benzoate 13 by the photochemical method described above.

[3aS-[2E, $3a\alpha$, 4α (1E, $3R^*$), 5β , $6a\alpha$]]-Methyl 5-[Hexahydro-5-hydroxy-4-(3-hydroxy-1-octenyl)-1-(dimethylphenylsilyl)-2(1H)-pentalenylidene]pentanoate and Its 2Z Isomer (16). To a solution of the allylsilane 15 (27.9 mg, 3.8×10^{-2} mmol) in a 1:50 mixture of ether and methanol (4.0 mL) was added a 1 M perchloric acid aqueous solution (0.6 mL, 0.6 mmol) at 18

°C. After the mixture was stirred for 30 min, to it was added saturated NaHCO₃ aqueous solution (3 mL). The mixture was extracted with ether $(2 \text{ mL} \times 3)$. The combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (3 g) using a 1:1 mixture of hexane/ethyl acetate as eluant to give 16 (18.7 mg, 98%) as a colorless oil: TLC R, 0.14 (1:1 hexane/ethyl acetate); IR (CHCl₃) 3600, 3400, 1730, 1100 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.25, 0.26, 0.28 (s each, 6, 2 SiCH₃), 0.88 (t, 3, J =6.7 Hz, CH₃), 1.0-2.3 (m, 24, 9 CH₂, 4 CH, and 2 OH), 3.5-3.7 (m, 1, CHO), 3.66, 3.67 (s each, 3, OCH₃), 4.04 (dt, 1, J = 6.4, 6.4 Hz, allylic CHO), 4.97, 5.12 (t each, 1, J = 7.0 and 6.7 Hz, respectively, vinyl), 5.4–5.6 (m, 2, vinyl in chain), 7.3–7.5 (m, 5, aromatic); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.4, -4.1, -3.8, -3.4, 14.1, 14.2, 22.6, 25.2, 25.5, 29.2, 31.8, 33.7, 33.8, 37.4, 39.6, 39.9, 40.0, 43.6, 43.7, 44.1, 44.8, 46.8, 51.5, 57.2, 60.4, 73.0, 76.3, 119.6, 120.0, 127.7, 129.0, 132.5, 132.8, 133.9, 135.3, 135.5, 138.2, 138.3, 143.1, 144.0, 174.1; MS, m/z 480 (M⁺ – H₂O), 462 (M⁺ – 2 H₂O); HRMS, m/z calcd for C₃₀H₄₄O₃Si (M⁺ – H₂O) 480.3059, found 480.3052.

[3aS-[3aα,5β,6α(1E,3R*),6aα]]-Methyl 1,3a,4,5,6,6a-Hexahydro-5-hydroxy-6-(3-hydroxy-1-octenyl)-2-pentalenepentanoate (Isocarbacyclin Methyl Ester) (3). To a solution of the allylsilane 16 (4.0 mg, 8.0×10^{-3} mmol) in CH₂Cl₂ (1.0 mL) was added a solution of trifluoroacetic acid in CH₂Cl₂ (1%, 1.0 mL, 0.13 mmol) at -78 °C. The mixture was stirred at -78 °C for 5.5 h and at -20 °C for 9 h and then poured into saturated NaHCO₃ aqueous solution (2 mL). The mixture was extracted with ether $(2 \text{ mL} \times 3)$. The combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (0.5 g) using a 1:1 mixture of hexane/ethyl acetate to give 3 (2.8 mg, 96%) as a colorless oil: TLC R_f 0.14 (1:1 hexane/ethyl acetate); IR (CHCl₃) 3600, 3400, 1730 cm⁻¹; $[\alpha]^{19}_{D}$ +10.6° (c 0.26, CH₃OH); ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, 3, J = 6.9 Hz, CH₃), 1.2–1.8 (m, 15, 6 CH₂, CH, and 2 OH), 1.8–2.1 (m, 4, $CH_2CH_2C(O)$ and allylic CH_2 in chain), 2.3-2.4 (m, 2, allylic CH₂ in ring), 2.32 (t, 2, J = 7.2 Hz, CH₂C(O)), 2.41 (dd, 1, J = 16.3, 8.7 Hz, allylic CH), 3.00 (dd, 1, J = 1.8, 7.0 Hz, allylic CH), 3.67 (s, 3, OCH₃), 3.78 (dd, 1, J = 2.4, 9.5 Hz, CHO), 4.09 (dt, 1 J = 6.3, 6.3 Hz, allylic CHO), 5.29 (d, 1, J =1.2 Hz, vinyl in ring), 5.5–5.6 (m, 2, vinyl in chain); $^{13}\mathrm{C}$ NMR (CDCl₃, 22.5 MHz) & 14.0, 22.6, 24.6, 25.1, 27.1, 29.6, 30.5, 31.7, 33.8, 37.0, 39.4, 44.1, 45.4, 51.4, 58.1, 73.2, 76.9, 128.2, 133.7, 135.5, 141.1, 174.1; MS, m/z 346 (M⁺ – H₂O), 328 (M⁺ – 2 H₂O); HRMS, m/z calcd for C₂₂H₃₄O₃ (M⁺ – H₂O) 346.2508, found 346.2500. Homogeneity of 3 was confirmed as follows: HPLC (for conditions, see General Remarks) indicated a single peak at t_R 20.5 min. Carbacyclin methyl ester and its 5Z isomer gave t_R 24.2 and 22.1 min, respectively under the same conditions. Absence of the Δ^6 -isomer was also confirmed after alkaline hydrolysis to isocarbacyclin (2). The 500-MHz ¹H NMR spectrum of synthetic 2 showed a signal due to the C-9 α proton at δ 5.29^{4,12g,h} but not at δ 5.35 where the signal of C-7 proton of the Δ^6 -isomer should occur. For detailed ${}^{1}H$ NMR data of the latter isomer, see ref 17.

 $[2R - [2\alpha, 3\beta(1E, 3S^*), 4\alpha]] - 4 - [[(1, 1-Dimethylethyl)di$ methylsilyl]oxy]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-2-(2-propynyl)cyclopentanone (18). In a 500-mL ampule equipped with a spiral tube was placed a solution of (S,E)-3-(tert-butyldimethylsiloxy)-1-iodo-1-octene (2.64 g, 7.16 mmol) in ether (42 mL) and cooled to ~78 °C. To this solution was added a solution of tert-butyllithium in pentane (1.77 M, 8.10 mL, 14.3 mmol), and the mixture was stirred for 3 h at this temperature. In a 30-mL round-bottomed flask were placed copper(I) iodide (1.36 g, 7.16 mmol) and THF (22 mL). To this suspension was added tributylphosphine (4.64 mL, 18.62 mmol) at room temperature under stirring. The mixture was stirred until a clear solution was obtained (ca. 20 min). To the alkyllithium solution prepared above was added the solution of the copperphosphine complex, and then the mixture was stirred for 10 min at -78 °C. To the resulting suspension was slowly added a solution of the enone 17 (1.00 g, 3.99 mmol), in THF (50 mL), over a period of 2 h. The reaction mixture was stirred for 2.5 h at -78 °C and

^{(17) (}a) Shibasaki, M.; Iseki, K.; Ikegami, S. Tetrahedron Lett. 1980,
21, 169. (b) Iseki, K.; Mase, T.; Okazaki, T.; Shibasaki, M.; Ikegami, S.
Chem. Pharm. Bull. 1983, 31, 4448.

poured into a saturated NH₄Cl aqueous solution (100 mL). The mixture was extracted with ether (40 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (50 g) using a 10:1 mixture of hexane/ethyl acetate as eluant to give the crude product (7.5 g). This was dissolved in CH_2Cl_2 (50 mL) followed by the addition of 30% hydrogen peroxide aqueous solution (5 mL, 410 mmol) at 0 °C. The resulting mixture was stirred for 80 min at 0 °C and poured into water (30 mL) and extracted with CH_2Cl_2 (40 mL \times 3). The combined organic extracts were washed with 5% sodium bisulfite aqueous solution (200 mL), dried over Na₂SO₄, and evaporated. The residual material was subjected to column chromatography on silica gel (80 g) using a 30:1 mixture of hexane/ethyl acetate as eluant to give 18 (1.68 g, 85%) as a colorless oil: TLC $R_f 0.73$ (2:1 hexane/ethyl acetate); $[\alpha]^{24}_{D}$ –35.2° (c 2.24, CH₃OH); IR (CHCl₃) 3300, 2120, 1750 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.01, 0.05, 0.06, 0.07 (s each, 12, 4 OSiCH₃), 0.88, 0.89 (s each, 21, 2 $OSiC(CH_3)_3$ and CH_3 , 1.2–1.6 (m, 8, 4 CH_2), 1.96 (t, 1, J = 2.6Hz, acetylenic), 2.0-2.4 (m, 3, C(O)CHCH2 and allylic CH), 2.6-2.9 (m, 3, C(O)CH₂ and C(O)CH), 4.0-4.2 (m, 2, 2 CHO), 5.52 (dd, 1, J = 7.9, 15.2 Hz, vinyl), 5.68 (dd, 1, J = 5.3, 15.5 Hz, vinyl); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.9, -4.5, -4.1, 13.9, 16.8, 18.0, 18.2, 22.6, 24.9, 25.8, 25.9, 31.9, 38.5, 47.5, 52.1, 52.5, 70.1, 72.7, 73.2, 80.9, 128.1, 137.0, 212.7; MS, m/z 492 (M⁺); HRMS, m/z calcd for C₂₄H₄₃O₃Si₂ (M⁺ - C₄H₉) 435.2750, found 435.2738.

[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3-methylene-2-(2propynyl)cyclopentyl]ethenyl]hexyl]oxy]dimethylsilane (19). In a 100-mL round-bottomed flask were placed a solution of the ketone 18 (412.5 mg, 0.84 mmol) in CH₂Cl₂ (20 mL) and the Zn-CH₂Br₂-TiCl₄ mixed methylenation reagent^{13a} (slurry, 10 mL) at 0 °C. The mixture was stirred at 0 °C for 1 h and was poured into a cold saturated NaHCO₃ aqueous solution (20 mL). The mixture was extracted with ether $(10 \times 3 \text{ mL})$. The combined ethereal extracts were dried over Na_2SO_4 and evaporated. The residual material was subjected to column chromatography on silica gel (45 g) using a 30:1 mixture of hexane/ethyl acetate as eluant to give 19 (308.7 mg, 78%) as a colorless oil: TLC R_f 0.71 (5:1 hexane/ethyl acetate); $[\alpha]^{24}_{D}$ -20.3° (c 1.77, CH₃OH); IR (CHCl₃) 3300, 2120 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.02, 0.04 (s each, 12, 4 OSiCH₃), 0.87, 0.89 (s each, 21, 2 OSiC(CH₃)₃ and CH_3), 1.1–1.6 (m, 8, 4 CH_2), 1.93 (t, 1, J = 2.6 Hz, acetylenic), 2.2–2.8 (m, 6, 2 CH₂ and 2 CH), 3.88 (dd, 1, J = 7.9, 14.8 Hz, CHO), 4.07 (dt, 1, J = 5.6, 11.2 Hz, allylic CHO), 4.98, 5.02 (br s each, 2, methylene), 5.42 (dd, 1, J = 7.9, 15,3 Hz, vinyl), 5.57 (dd, 1, J = 5.1, 15.3 Hz, vinyl); ¹³C NMR (CDCl₃, 22.5 MHz) δ -4.6, -4.4, -4.1, 14.1, 18.1, 18.3, 21.4, 22.7, 25.1, 26.0, 31.9, 38.7, 42.3, 45.9, 55.2, 69.1, 73.0, 76.6, 82.7, 107.3, 129.8, 136.0, 149.8; MS, m/z 490 (M⁺); HRMS, m/z calcd for C₂₉H₅₄O₂Si₂ 490.3662, found 490.3658.

 $[1S - [1\alpha, 2\alpha, 3\beta(1E, 3R^*), 4\alpha]] - 4 - [[(1, 1-Dimethylethyl)di$ methylsilyl]oxy]-3-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy-1-octenyl]-2-(2-propynyl)cyclopentanemethanol (20). In a 30-mL round-bottomed flask was placed a solution of 19 (494.0 mg, 1.01 mmol) in THF (5 mL). To this solution was added a solution of 9-borabicyclo[3.3.1]nonane in THF (0.5 M, 4.5 mL, 2.3 mmol) at 0 °C, and the mixture was stirred at 0 °C for 30 min. After warming to 18 °C, the mixture was stirred for 2.5 h at this temperature. Then 3 N NaOH aqueous solution (0.6 mL) and 30% H₂O₂ aqueous solution (0.6 mL) were successively added at 0 °C, and the mixture was stirred for 15 min. The reaction mixture was poured into water (5 mL), and the mixture was extracted with ether (3 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (50 g) using a 7:1 mixture of hexane/ethyl acetate as eluant to give 20 (194.7 mg, 38%) as a colorless oil: TLC R_t 0.22 (5:1 hexane/ethyl acetate); $[\alpha]^{21}$ +1.1° (c 1.08, CH₃OH); IR (CHCl₃) 3400, 3300, 2320 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) & 0.0-0.1 (m, 12, 4 OSiCH₃), 0.8-1.0 (m, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1-1.9 (m, 11, 5 CH₂ and OH), 1.95 (t, 1, J = 2.6 Hz, acetylenic), 2.0–2.3 (m, 5, CH₂ and 3 CH), 3.7–3.9 (m, 2, CH₂O), 3.9-4.1 (m, 2, 2 CHO), 5.3-5.5 (m, 2, vinyl); ¹³C NMR $(C_6D_6, 22.5 \text{ MHz}) \delta - 4.6, -4.4, -4.1, 14.1, 18.0, 18.2, 18.3, 22.9, 25.4,$ 26.0, 32.1, 39.0, 41.2, 45.6, 57.1, 63.2, 69.1, 73.1, 78.8, 84.0, 131.0, 135.7; MS, m/z 508 (M⁺); HRMS, m/z calcd for C₂₉H₅₆O₃Si₂ 508.3768, found 508.3780.

 $[1S - [1\alpha, 2\alpha, 3\beta(1E, 3R^*), 4\alpha]] - 4 - [[(1, 1-Dimethylethyl)di$ methylsilyl]oxy]-3-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-2-(2-propynyl)cyclopentanecarboxaldehyde (21). To a solution of oxalyl chloride (0.03 mL, 0.34 mmol) in CH_2Cl_2 (2.0 mL) was added DMSO (0.05 mL, 0.70 mmol) slowly under stirring at -50 °C. After 5 min, to this was added a solution of 20 (132 mg, 0.26 mmol) in CH₂Cl₂ (1.0 mL), and the mixture was stirred for 5 min at -50 °C. Triethylamine (0.2 mL, 1.4 mmol) was added to the mixture at -50 °C and stirred for 10 min at the same temperature. After warming to 17 °C, the mixture was stirred for 1 h and then poured into water (5 mL). The mixture was extracted with CH_2Cl_2 (3 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (10 g) using a 15:1 mixture of hexane/ethyl acetate as eluant to give 21 (124.7 mg, 95%) as a colorless oil: TLC R_f 0.44 (5:1 hexane/ethyl acetate); IR (CHCl₃) 3300, 2320, 1720 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 0.02, 0.03, 0.04, 0.05 (s each, 12, 4 OSiCH₃), 0.87, 0.89 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.0-1.6 (m, 9, 4 CH₂ and CH), 1.9-2.2 (m, 3, acetylenic and CH₂ in ring), 2.2-2.5 (m, 3, allylic CH and CH₂), 2.8-3.0 (m, 1, C(O)CH), 3.95 (dd, 1, J = 6.8, 13.7 Hz, CHO), 4.07 (dt, 1, J = 5.5, 5.5 Hz, allylic CHO), 5.36 (dd, 1, J = 8.4, 16.5 Hz, vinyl), 5.56 (dd, 1, J = 5.1, 15.4 Hz, vinyl), 9.97 (d, 1, J = 2.9 Hz, C(O)H); MS, m/z 449 (M⁺ – C₄H₉); HRMS, m/z calcd for $C_{25}H_{45}O_3Si_2$ (M⁺ – C_4H_9) 449.2907, found 449.2926.

 $[1S - [1\alpha, 2\alpha, 3\beta(1E, 3R^*), 4\alpha]] - [4 - [[(1, 1-Dimethylethyl)di$ methylsilyl]oxy]-3-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-2-(2-propynyl)cyclopentyl](dimethylphenysilyl)methyl m-(Trifluoromethyl)benzoate (22). To a solution of the aldehyde 21 (123.8 mg, 0.24 mmol) in THF (8.0 mL) was added a solution of $C_6H_5(CH_3)_2SiLi$ (0.62 M, 0.48 mL, 0.30 mmol) in THF at -78 °C and stirred for 5 min at this temperature. To this mixture were successively added HMPA (0.4 mL, 2.4 mmol) and m-(trifluoromethyl)benzoyl chloride (0.11 mL, 0.74 mmol) at -78 °C. The mixture was warmed to 0 °C, stirred for 60 min, and then poured into a saturated NH₄Cl aqueous solution (6 mL). The mixture was extracted with ether (6 mL \times 3), and the combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (6 g) using a 70:1 mixture of hexane/ethyl acetate as eluant to give 22 (132.5 mg, 67%) as a colorless oil: TLC R_f 0.60 (5:1 hexane/ethyl acetate); IR (CHCl₃) 3300, 2120, 1710 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.05, -0.04, -0.01 (s each, 12, 4 OSiCH₃), 0.39 (s, 6, 2 SiCH₃), 0.82, 0.84, 0.85 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1-1.4 (m, 8, 4 CH₂), 1.4-2.6 (m, 7, 2 CH₂ and 3 CH), 1.84 (t, 1, J = 2.6 Hz, acetylenic), 3.78 (dd, 1, J = 7.3, 15.8 Hz, CHO in ring), 3.9-4.0 (m, 1, allylic CHO),5.1-5.3 (m, 2, vinyl), 5.64 (d, 1, J = 2.3 Hz, CH(Si)O), 7.3-8.3 (m, 9, aromatic); ¹³C NMR (CDCl₃, 22.5 MHz) δ -5.0, -4.7, -4.5, -4.2, -4.1, 14.0, 17.8, 18.2, 22.6, 25.1, 25.9, 31.9, 36.5, 38.7, 39.1, 45.5, 55.7, 69.1, 70.4, 72.9, 78.1, 83.3, 126.5, 126.7, 127.7, 127.9, 129.1, 129.2, 129.6, 130.1, 131.7, 132.8, 133.1, 134.2, 136.2, 164.9; MS, m/z 757 (M⁺ – C₄H₉); HRMS, m/z calcd for C₄₁H₆₀O₄Si₃F₃ (M⁺ - C₄H₉) 757.3751, found 757.3737.

 $[1S-[1\alpha,2\alpha,3\beta(1E,3R^*),4\alpha]]-O-[4-[[(1,1-Dimethylethyl)$ dimethylsilyl]oxy]-3-[3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-octenyl]-2-(2-propynyl)cyclopentyl](dimethylphenysilyl)methyl S-Methyl Carbonodithioate (23). To a solution of the aldehyde 21 (21.2 mg, 4.2×10^{-2} mmol) in THF (1.5 mL) was added a solution of $C_6H_5(CH_3)_2SiLi$ (0.6 M, 0.2 mL, 0.13 mmol) in THF at -78 °C and stirred for 5 min at this temperature. To this mixture were successively added HMPA (0.4 mL, 2.2 mmol) and CS₂ (0.02 mL, 0.33 mmol) and warmed to 0 °C. After 60 min, to this was added CH₃I (0.02 mL, 0.33 mmol) and stirred for 30 min at 0 °C. The reaction mixture was poured into a saturated NH₄Cl aqueous solution (2 mL), and the mixture was extracted with ether (2 mL \times 3). The combined ethereal extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (5 g) using a 20:1 mixture of hexane/ethyl acetate as eluant to give 23 (26.0 mg, 84%) as a yellow oil: TLC R_f 0.51 (5:1 hexane/ethyl acetate); IR (CHCl₃) 3310, 2120 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.07, -0.06, -0.01, 0.02 (s each, 12, 4 OSiCH₃), 0.41, 0.43 (s each, 6, 2 SiCH₃), 0.7-1.0 (m, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1-2.6 (m, 15, 6 CH₂ and 3 CH), 1.18 (t, 1, J = 2.5 Hz, acetylenic),

2.52 (s, 3, SCH₃), 3.73 (dd; 1, J = 8.6, 15.0 Hz, CHO), 4.01 (dt, 1, J = 5.6, 5.6 Hz, allylic CHO), 5.23 (dd, 1, J = 7.3, 15.5 Hz, vinyl), 5.39 (dd, 1, J = 5.4, 15.3 Hz, vinyl), 6.39 (d, 1, J = 2.3 Hz, CH-(Si)O), 7.2–7.6 (m, 5, aromatic); $^{13}\mathrm{C}$ NMR (CDCl₃, 22.5 MHz) δ -4.6, -4.4, -4.0, -3.7, -3.4, 14.1, 18.0, 18.3, 18.5, 18.7, 22.7, 25.1, 26.0, 32.0, 36.6, 38.7, 40.0, 45.5, 55.5, 69.0, 73.0, 78.0, 80.5, 83.4, 127.7, 127.9, 129.7, 130.2, 134.3, 136.1, 213.8; MS, m/z 732 (M⁺);HRMS, m/z calcd for $C_{39}H_{68}O_3Si_3S_2$ 732.3917, found 732.3908.

 $[3aR - [3a\alpha, 4\alpha(1E, 3R^*), 5\beta, 6a\alpha]] - (1, 1-Dimethylethyl)[[1-$ [2-[5-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-(dimethylphenylsilyl)-2-methylene-4-octahydropentalenyl]ethenyl]hexyl]oxy]dimethylsilane (24). The solution of 22 (20.0 mg, 2.45×10^{-2} mmol), Mg(ClO₄)₂ (5.5 mg, 2.46 × 10⁻² mmol), and N-methylcarbazole (4.5 mg, 2.48×10^{-2} mmol) in a 10:1 mixture of THF and water (7.5 mL) was irradiated by using a 500-W high-pressure mercury lamp at 20 °C for 4 h. This solution was poured into a saturated NaHCO₃ aqueous solution (5 mL). The resulting mixture was extracted with ether (5 mL \times 3). The combined organic extracts were dried over Na₂SO₄ and evaporated. The residual material was subjected to column chromatography on silica gel (2 g) using a 100:1 mixture of hexane/ethyl acetate as eluant to give 24 (7.7 mg, 50%) as a colorless oil: TLC $R_f 0.77$ (5:1 hexane/ethyl acetate); $[\alpha]^{24}_{D} -27.5^{\circ}$ (c 1.04, hexane); IR (CHCl₃) 1640, 1460, 1360 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ -0.01, 0.02 (s each, 12, 4 OSiCH₃), 0.28, 0.29 (s each, 6, 2 SiCH₃), 0.85, 0.88 (s each, 21, 2 OSiC(CH₃)₃ and CH₃), 1.1-1.5 (m, 9, 4 CH₂ and CH), 1.8–2.4 (m, 7, 2 CH₂ and 3 CH), 3.67 (dd, 1, J =9.2, 16.2 Hz, CHO), 3.9-4.1 (m, 1, allylic CHO), 4.55, 4.74 (br s each, 2, methylene), 5.3-5.6 (m, 2, vinyl), 7.2-7.6 (m, 5, aromatic);

¹³C NMR (CDCl₃, 22.5 MHz) δ -4.6, -4.4, -4.2, -4.1, 14.0, 18.1, 18.3, 22.7, 25.1, 26.0, 31.9, 38.7, 39.3, 41.0, 43.9, 44.7, 46.1, 55.7, 73.3, 78.2, 104.8, 127.6, 128.9, 130.8, 134.0, 134.5, 138.2, 153.4; MS, m/z 626 (M⁺); HRMS, m/z calcd for $C_{37}H_{66}O_2Si_3$ 626.4370, found 626.4387.

 $[3aR-[3a\alpha,4\alpha(1E,3R*),5\beta,6a\alpha]]-(1,1-Dimethylethyl)[[1-$ [2-[5-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1-(dimethylphenylsilyl)-2-methylene-4-octahydropentalenyl]ethenyl]hexyl]oxy]dimethylsilane (24). In a 20-mL test tube was placed a solution of the xanthate 23 (17.5 mg, 2.4×10^{-2} mmol) in benzene (1.0 mL). Tributyltin hydride (0.01 mL, 3.7×10^{-2} mmol) and di-tert-butyl peroxide (2.5 mg, 1.71×10^{-2} mmol) were added at 75 °C, and the mixture was stirred for 36 h. The reaction mixture was evaporated, and the residual material was subjected to column chromatography on silica gel (3 g) using a 25:1 mixture of hexane/ethyl acetate as eluant to give 24 (11.9 mg, 79%) as a colorless oil. TLC R_f value and spectral data of this compound were identical with those of the product derived from the m-(trifluoromethyl)benzoate 22 by the photochemical method described above.

Acknowledgment. This work was partly supported by Grant-in-Aid for Specially Promoted Research (No. 62065005) from the Ministry of Education, Science, and Culture of Japan and Shorai Foundation for Science and Technology. We are grateful to Teijin Co. for generous supply of the compound 17, a chiral ω side-chain unit, carbacyclin methy ester, and its 5Z isomer.

A Stereoselective Synthesis of (+)-Prelog-Djerassi Lactone from Furanoid Intermediates

Stephen F. Martin^{*1} and Denise E. Guinn

Department of Chemistry, The University of Texas, Austin, Texas 78712

Received April 27, 1987

A facile and concise asymmetric synthesis of the methyl ester of Prelog-Djerassi lactonic acid 22 has been completed in nine chemical operations and 10% overall yield from furaldehyde (4) by employing a strategy that featured the use of homochiral furfuryl carbinols as latent hydropyranones. The stereocenters at C(2) and C(3) of 22 were established in an absolute sense by the diastereoselective aldol condensation of furaldehyde (4) with the boron enolate derived from the chiral imide 5 using the methodology developed by Evans. Removal of the chiral auxiliary followed by oxidation of the furan ring unmasked the hydropyranone ring system, and subsequent protection of the anomeric hydroxyl group led to the production of the glycoside derivative 13a in good overall yield. Homologation of 13a via conjugate addition of lithium dimethylcuprate followed by oxidation afforded the enone 17, which was olefinated by a Wittig reaction to give the diene 18. Sequential stereoselective, catalytic hydrogenation of 18 and Jones oxidation completed the asymmetric synthesis of the methyl ester of Prelog-Djerassi lactone 22.

Introduction

The Prelog-Djerassi lactonic acid 1, which was originally isolated as a degradation product of narbomycin, methymycin, picromycin, and neomethymycin,²⁻⁴ has served as an important focal point for the design and application of new methods that allow the stereoselective elaboration of cyclic and acyclic carbon skeleta bearing a number of contiguous and/or alternating stereocenters. Since the stereochemical relationships present in 1 are found in other

macrolide and ionophore antibiotics, the strategies and tactics that have been developed for its assemblage may be extended to the stereoselective syntheses of those more complex natural products. It is therefore not surprising that Prelog-Djerassi lactonic acid 1 has emerged as one of the standard benchmarks against which new methodology for effecting stereoselective carbon-carbon bond construction and functionalization of carbon frameworks is measured, and at this writing some 34 successes in this venture have been recorded.⁵

⁽¹⁾ Recipient of a National Institutes of Health (National Cancer Institute) Research Career Development Award, 1980-1985. (2) Anliker, R.; Dvornik, D.; Gubler, K.; Heusser, H.; Prelog, V. Helv.

Chim. Acta 1956, 39, 1785.

 ⁽³⁾ Djerassi, C.; Zderic, J. A. J. Am. Chem. Soc. 1956, 78, 6390.
 (4) (a) Anliker, R.; Gubler, K. Helv. Chim. Acta 1957, 40, 119. (b)

Brockmann, H.; Oster, R. Chem. Ber. 1957, 90, 605. (c) Rickards, D. G.; Smith, R. M. Tetrahedron Lett. 1970, 1025. (d) Manwaring, R. W.; Rickards, R. W.; Smith, R. M. Tetrahedron Lett. 1970, 1029.